Tuesday, January 11, 2011

Wall Street 3 - The Rise of the Machines

Discussed algorithmic trading recently with an economics professor and mentioned the claim that this can create instabilities. For instance, if too many use similar programs, these can create feedback loops such that sales trigger new sales that trigger new sales etc. Or that the mix of currently existing strategies interact in such a way that they create a bubble. The response was that this is unlikely to happen - as traders will take into account the nature of and intereactions between the different strategies that are out there. As Robert Anton Wilson said, you can always see the invisible hand as long as you look hard enough and long enough (or something along those lines).

Amplify’d from www.wired.com
Over the past decade, algorithmic trading has overtaken the industry. From the single desk of a startup hedge fund to the gilded halls of Goldman Sachs, computer code is now responsible for most of the activity on Wall Street. (By some estimates, computer-aided high-frequency trading now accounts for about 70 percent of total trade volume.) Increasingly, the market’s ups and downs are determined not by traders competing to see who has the best information or sharpest business mind but by algorithms feverishly scanning for faint signals of potential profit.
at its worst, it is an inscrutable and uncontrollable feedback loop. Individually, these algorithms may be easy to control but when they interact they can create unexpected behaviors—a conversation that can overwhelm the system it was built to navigate. On May 6, 2010, the Dow Jones Industrial Average inexplicably experienced a series of drops that came to be known as the flash crash, at one point shedding some 573 points in five minutes. Less than five months later, Progress Energy, a North Carolina utility, watched helplessly as its share price fell 90 percent. Also in late September, Apple shares dropped nearly 4 percent in just 30 seconds, before recovering a few minutes later.

And they started applying those methods to every aspect of the financial industry. Some built algorithms to perform the familiar function of discovering, buying, and selling individual stocks (a practice known as proprietary, or “prop,” trading). Others devised algorithms to help brokers execute large trades—massive buy or sell orders that take a while to go through and that become vulnerable to price manipulation if other traders sniff them out before they’re completed. These algorithms break up and optimize those orders to conceal them from the rest of the market. (This, confusingly enough, is known as algorithmic trading.) Still others are used to crack those codes, to discover the massive orders that other quants are trying to conceal. (This is called predatory trading.)

The result is a universe of competing lines of code, each of them trying to outsmart and one-up the other. “We often discuss it in terms of The Hunt for Red October, like submarine warfare,” says Dan Mathisson, head of Advanced Execution Services at Credit Suisse. “There are predatory traders out there that are constantly probing in the dark, trying to detect the presence of a big submarine coming through. And the job of the algorithmic trader is to make that submarine as stealth as possible.”

In late September, the Commodity Futures Trading Commission and the Securities and Exchange Commission released a 104-page report on the May 6 flash crash. The culprit, the report determined, was a “large fundamental trader” that had used an algorithm to hedge its stock market position. The trade was executed in just 20 minutes—an extremely aggressive time frame, which triggered a market plunge as other algorithms reacted, first to the sale and then to one another’s behavior. The chaos produced seemingly nonsensical trades—shares of Accenture were sold for a penny, for instance, while shares of Apple were purchased for $100,000 each. (Both trades were subsequently canceled.) The activity briefly paralyzed the entire financial system.

Read more at www.wired.com
 

No comments:

Post a Comment